BMSCW LIBRARY QUESTION PAPER

B.M.S COLLEGE FOR WOMEN AUTONOMOUS BENGALURU – 560004

END SEMESTER EXAMINATION – OCTOBER 2022

M.Sc. in Mathematics – II Semester Topology – II

Course Code: MM203T Duration: 3 Hours

QP Code: 21003 Max marks: 70

Instructions:	1) All questions carry equal marks.
	2) Answer any five full questions.

1.	a) Define a compact space. Prove that a closed subset of a compact space is compact.
	b) Prove that every sequentially compact space is countably compact. Is the converse true? Explain.
	(7+7)

- 2. a) Prove that a metric space which is Lindelöf is second countable.b) Prove that second axiom space is both hereditary and topological property.
- 3. a) Define projections on the product space X × Y. Prove that product topology is the smallest topology for which the projections are continuous.
 b) Prove that if A is closed in (X, τ) and B is closed in (Y, τ*) then A × B is closed in the product topology and conversely. (7+7)
- 4. a) Define T₀ -space. Prove that in a T₀ -space the closure of distinct points are distinct and conversely.
 b) Prove that a topological space is (X, τ) is a T₁ -space if and only if all singleton sets are closed.
- 5. a) Prove that a continuous bijection from a compact space onto a Hausdorff space is a homeomorphism.
 b) Show that a metric space is a T₃ -space.
- (7+7)
 6. a) Show that a regular Lindelöf space is normal.
 b) Show that a normal space is regular if and only if it is completely regular.
 (6+8)
 7. a) Prove that complete normality implies normality.
 b) State and prove Tietze's extension theorem.
 (5+9)
 8. a) Prove that a space is completely normal if and only if every subspace is normal.
 b) Prove that a regular Lindelöf space is paracompact.

(7+7)

(7+7)

(7+7)
